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Alpha synuclein (asyn) fibrils are found in the Lewy Bodies of patients with Parkinson’s disease (PD).
The aggregation of the asyn monomer to soluble oligomers and insoluble fibril aggregates is
believed to be one of the causes of PD. Recently, the view of the native state of asyn as a monomeric
ensemble was challenged by a report suggesting that asyn exists in its native state as a helical tet-

ramer. This review reports on our current understanding of asyn within the context of these recent
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developments and describes the work performed by a number of groups to address the monomer/

tetramer debate. A number of in depth studies have subsequently shown that both non-acetylated
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and acetylated asyn purified under mild conditions are primarily monomer. A description of the
accessible states of acetylated asyn monomer and the ability of asyn to self-associate is explored.
© 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Parkinson’s disease (PD) research has sought to answer ques-
tions of alpha synuclein (asyn) function and the mechanism of
aggregation surrounding disease pathology. Both remain to be fully
articulated today, but several observations have been established
and a range of neurodegenerative diseases termed the “synuclein-
opathies” have been identified [1,2]. PD in particular is the synuc-
leinopathy characterized by the loss of dopaminergic neurons and
is largely considered to be an age-related disease, accompanied in
part by age-related deposition of asyn [3]. asyn, a major protein

Abbreviations: asyn, a--synuclein; Ac-aisyn, acetylated o-synuclein; BOG, beta-octyl
glucopyranoside; GST, glutathione S-transferase; CD, circular dichroism; CN-PAGE, clear
native PAGE; ESI-MS, electrospray ionization-mass spectrometry; ESI-IMS-MS, electro-
spray ionization-ion mobility spectrometry-mass spectrometry; ELISA, enzyme-linked
immunosorbent assay; IDP, intrinsically disordered protein; Nat, N-acetyltransferase;
NatB, N-acetyltransferase B; NAC, non-amyloid component region; NMR, nuclear
magnetic resonance; PD, Parkinson’s disease; PTM, post-translational modifications;
RBC, red blood cells; SE-AUC, sedimentation equilibrium-analytical ultracentrifugation;
SEC, size exclusion chromatography; SLS, static light scattering; ThT, thioflavin T
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component of Lewy Bodies [4,5] in patients with Parkinson’s, is a
small primarily neuronal protein that is known to make a struc-
tural transition to amyloid fibrils [6-8]. asyn is expressed abun-
dantly in the nervous system and localizes near presynaptic
nerve terminals [9-13]. It is also expressed at high levels in eryth-
rocytes and platelets [14]. asyn’s function is unknown, but there is
strong evidence that it exhibits lipid binding in vesicles and synap-
tic membranes [15] and may somehow exert its pathology through
this behavior [16]. There is evidence that asyn functions in assem-
bly of the SNARE complex involved in vesicle transport [17], that it
may more generally be involved in synaptic vesicle trafficking and
regulation and/or may play a key role in neuronal cell survival [18-
22].

The deposition of asyn has largely been thought to originate
from an intrinsically disordered monomer ensemble that under fi-
bril promoting conditions forms amyloid [7,23,24], but recently
this view of asyn’s native state was challenged [25]. Selkoe and
colleagues pushed the biophysical community’s long-held view
of asyn as an intrinsically disordered monomer by suggesting that
the protein exists in its native state as a fibril-resistant helical tet-
ramer. They purified the sample from human erythrocytes, opting
to exclude a potentially “harsh” and commonly used boiling step
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from the purification. Based on this work several questions pre-
sented themselves. Do bacterial systems that are commonly used
to obtain sample for biophysical characterization not possess the
necessary machinery for tetramer assembly? Could the commonly
used boiling step during purification denature some key native
structure that promoted a helical tetramer of asyn? Aside from
these assembly and purification issues, there was also one molec-
ular difference between the purified samples of Selkoe and col-
leagues and previous studies, indicative of modification to the
monomer by an acetyl group (Ac-asyn).

This review reports on our current understanding of asyn with-
in the context of these recent developments and describes the
work performed by a number of groups to address the monomer/
tetramer debate [25-33]. We summarize major shifts within re-
cently published works addressing these issues in Table 1. Numer-
ous studies indicate that asyn, both acetylated and non-acetylated,
exists as intrinsically disordered monomer conformational ensem-
ble under mild purification conditions. We highlight that the
ensemble of monomers is known to develop into a wide range of
accessible conformations upon changes of environmental condi-
tions, that it can populate many soluble oligomeric states of vary-
ing morphologies and toxicities, and settle into various insoluble
fibril or amorphous aggregate morphologies [23], that have largely
been studied in the context of PD-related pathology (Fig. 1). We
discuss the suggestion of a soluble fibril-resistant helical tetramer
that presumably represents a non-pathological aggregate of asyn
which may have to dissociate before fibril formation can proceed
through the monomer (Fig. 1). The potential that established meth-
ods might disrupt native-stabilizing interactions of a fibril-resis-
tant helical tetramer of asyn have heightened awareness to cell
machinery, to asyn purification methods, and to the difficulties
in choosing appropriate methods of characterization. The extent
to which N-terminal acetylation impacts upon the conformation
and aggregation behavior of asyn is discussed separately and it is
shown that the acetyl group does not promote the formation of
the helical tetramer under mild purification conditions.

2. Overview of non-acetylated asyn ensemble: monomers and
dimers

2.1. Biophysical characterization of the non-acetylated monomer
ensemble

The native state of non-acetylated asyn has been thought to
originate from an ensemble of intrinsically disordered monomeric
forms, with recognition that the monomers therein are capable of
adopting a wide range of accessible conformations depending on
solution and environmental conditions [34-38]. Uversky first
spoke of assyn as the “protein chameleon” [23] due to its ability
to respond to its environment and binding partners by varying
its foldedness and aggregation state. asyn is often described as a
140 residue intrinsically disordered protein (IDP) characterized
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Fig. 1. A schematic diagram of the possible accessible states of non-acetylated and
acetylated asyn. The right side represents two possible pathological aggregation
pathways from the unfolded monomeric ensemble to (1) insoluble fibrils through
on-pathway transient oligomeric intermediates and (2) to off-pathway soluble
oligomers. Off-pathway soluble oligomers represent non-fibrillar end products of
aggregation. The left side presents (1) the recent proposal that asyn can exist as a
soluble fibril-resistant helical tetramer which is acetylated, and (2) other known
oligomers that are not toxic such as methionine oxidized oligomers. It is proposed
that the non-pathological tetramer needs to dissociate to the monomeric ensemble
before pathological aggregation can occur (solid arrow). The relationship between
the unfolded monomeric ensemble and the proposed tetramer is a subject of
investigation (dashed arrow).

by three distinct regions of the protein: an N-terminal lipid binding
repeat region that houses the mutations A30P, E46K, and A53T
linked to early onset disease, a hydrophobic non-amyloid compo-
nent (NAC) region implicated in fibril formation, and an acidic
more proline-rich C-terminus suggested to have chaperone activity
and possess some key role in modulating structure in the N-termi-
nus [6,39,40]. As summarized in Table 1, to study PD related aggre-
gation, asyn has typically been obtained from overexpression in
bacteria, yielding a non-acetylated IDP, as bacteria typically do
not modify their proteins by acetylation (Fig. 2A) [41-43]. Addi-
tionally, while boiling as part of the purification protocol would
typically be considered to be harsh for a globular protein, IDP’s
are in general characterized by thermostability [34]. Because of
this heat stability, asyn has often been boiled to achieve purity.
In addition, IDP’s like asyn are generally characterized by a highly
charged sequence, a lack of stable secondary structure, and a larger
than expected Stokes radius compared to spherical and folded pro-
teins of the corresponding molecular weight [34,44,45].

The asyn monomer is both unfolded and extended, as it was
first reported to have a larger Stokes radius than expected for glob-
ular protein of similar molecular weight and a primarily random
coil circular dichroism (CD) spectrum [34,36,46]. However, the
protein is not fully extended for a protein of its size, implying a
slight compaction of the monomeric ensemble [36,47]. Evidence

Table 1
Historical description of shifts in asyn purification approaches and conformational properties.
1996-Dec. 2011 >Dec 2011 >May 2012
Source Mostly bacterial Mammalian Bacterial/mammalian
N-terminal acetylation No Yes Yes

Purification protocol
Average secondary structure

Often denaturing
Primarily random coil

Transient initiating N-terminal helix No
Primary native state Monomer
Fibril prone Yes
Referring section within text 2-3

Non-denaturing Denaturing and non-denaturing
Primarily helical Primarily random coil
- Yes

Tetramer Primarily monomer
No Yes
57 6,8

" The most recent report by Selkoe and colleagues, suggests “metastability” of the tetramer (Section 7).
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Fig. 2. A pictoral representation of the co-expression system designed to generate
Ac-asyn in bacteria. In this figure: ring-like circles represent plasmids, lines
represent the asyn protein, and two ellipses represent the NatB protein. (A)
Bacteria, lacking NatB, express non-acetylated protein. (B) Yeast house yeast-NatB
which acts upon asyn and generates Ac-asyn. (C) To obtain Ac-asyn within a
bacterial expression system, plasmids encoding yeast-NatB can be co-expressed
with the plasmid encoding for asyn so that Ac-aisyn is obtained[172].

for contact between the C-terminus and both the NAC and N-ter-
minal regions of the protein from nuclear magnetic resonance
(NMR) [38,48-55], electron paramagnetic resonance [56] and
molecular dynamic studies [52,57] indicates a possible source of
this compaction, as well as some transient secondary structure
[55,58-60]. The compaction may be at least be partially driven
by hydrophobic patches located in the C-terminal (residues 115-
119, and 125-129) associating with and shielding both the hydro-
phobic N-terminal and NAC regions [50,61]. It should be empha-
sized that evidence for contact between the N- and C- termini
does not imply a static closed picture of asyn as an IDP [59,62].
Rather, this is a dynamic interaction, and observation of slight
compaction is the result of observations on a highly averaged bulk
ensemble [48].

Under conditions promoting pathological aggregation of asyn,
conformational shifts in the ensemble are observed. There is evi-
dence that these interactions may keep the N-terminus from path-
ological misfolding [39,63], as their release is associated with
increased fibril formation [38,50,52,64,65]. For example, when
the solution pH is lowered, there is a structural rearrangement of
the monomer ensemble with enhanced contacts NAC-C terminus
and C-C contacts resulting from charge neutralization and com-
paction of the C-terminal region [38,54,58,66]. Environmental or
experimental shifts that reduce the net charge or increase hydro-
phobicity of the protein [67-69], or interaction with small mole-
cules or metal ions [70-72] can change subtly, but significantly,
both the long-range and short-range contacts and conformations
sampled in the monomeric ensemble.

Therefore, small changes to the asyn monomer can potentiate
big effects on aggregation behavior, yet only small differences to

the monomer ensemble. For example, the familial mutations
(A30P, E46K, A53T) of asyn are structurally comparable, as they
are similarly unfolded and have similar radii of gyration, but they
have distinct kinetics of fibril formation [55,73-79]. NMR spectros-
copy has revealed that mutations affect chemical shifts surround-
ing the mutation site and that we can correlate these shifts to
region-specific shifts in the population of transient secondary
structure. These relatively small shifts in transient secondary
structure populations can explain bulk differences in fibril forma-
tion rates [59,80,81].

The N-terminal region is also known to adopt helical structure
upon binding lipids, representing a more dramatic conformational
shift of the monomer ensemble [82-84]. NMR groups have demon-
strated that asyn displays chemical shifts characteristic of a mostly
unfolded peptide, but that the first 100 residues transiently popu-
late helical structure. When bound to lipids or micelles, however,
chemical shifts of these residues indicate a structured helical envi-
ronment. [85,86]. Bax et al. characterized the structure of the mi-
celle bound form of the protein, and the fact that asyn adopts
helical structure at its N-termini through its repeat region upon
binding lipids membranes and micelles has become well-known
[82]. Because asyn localizes near synaptic nerve termini [9], its li-
pid-induced helical structure [35,87-89] may be crucial in under-
standing the protein’s function at the membrane, yet it is still
unknown how this N-terminally helical monomer conformation
is related to the trigger of fibril formation.

2.2. Dimers: equilibrium species and pathological intermediates

Dimers can exist in a small population in pseudo-equilibrium
with the monomer ensemble. The Baum lab demonstrated that in-
deed antiparallel transient inter-chain contacts between the
C-terminal hydrophobic patches and the N-terminal region
(residues: 3-15 and 35-50) could be detected by using NMR para-
magnetic relaxation enhancement experiments [54]. Electrospray
ionization mass spectrometry (ESI-MS) and electrospray ioniza-
tion-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS)
obtained under similar conditions has shown that the predominant
oligomeric form we observe in asyn is the dimer. This soft ionization
technique has revealed the “conformational heterogeneity” of asyn,
where the monomers and dimers themselves exist in both extended
and compact conformations [30,90,91], suggesting that the ensem-
ble view of asyn also extends into its higher oligomeric states.

It is unknown whether this pseudo-equilibrium anti-parallel di-
mer is on pathway to the fibril formation. It is reasonable to as-
sume that inter-chain N-N species, which adopts the same
parallel orientation as monomer units as in the core of the fibril,
lies further along the pathway to fibril formation than anti-parallel
oriented monomers [92]. This would imply reorientation of mono-
mer units as an obligatory step before formation of the fibril. How-
ever, at least one report demonstrates that toxic prefibrillar
amyloid aggregates adopt an antiparallel orientation [93], and in
this sense we cannot draw any analogy to this pseudo-equilibrium
dimer population that exists with the fibril accessible monomer
ensemble, and how the monomers therein may interact with it.

As the monomeric ensemble is shifted towards more fibril
prone conditions, previously described conformational changes
(Section 2.1), as well as changes in population of oligomeric species
occurs. Incubation at high temperature is one external factor
inducing this shift [94]. Under these conditions, soluble oligomers
of asyn spontaneously associate and a dimer is the predominant
oligomeric species of asyn to appear alongside formation of the fi-
bril, along with smaller populations of higher-order oligomers. Bio-
physical characterization of this intermediate which includes some
dimer shows it has more hydrophobic patches exposed than the
native monomer [36]. This on-pathway dimer that appears at the
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time of fibril formation may be conformationally dissimilar from
the pseudo-equilibrium dimer population previously described,
which may not necessarily be correlated with fibril formation.
There is some evidence that formation of at least one species of di-
mer is the rate limiting step of fibril formation [95] and cysteine
mutants have shown that particular dimer linkages accelerate fibril
formation in vivo and in vitro [96]. This implies accessibility of
many distinct conformations for the dimer, in the same way as
the monomer, and presumably varying degrees of membrane affin-
ity and cytotoxicity. Additionally, dimers are not the sole on-path-
way oligomeric species that appear during events of PD pathology.
Observations of higher order oligomers that occur alongside fibril
formation and in response to other events, appear to include a
large slew of different species, which we address in the upcoming
section.

3. Heterogeneity of the asyn oligomeric structures and their
pathogenicity

3.1. The role of oligomers in in vivo pathology

The motivation to understand whether there is a helical tetra-
mer of Ac-asyn lies not only in desire to accurately portray the pro-
tein in vivo, but also to understand how oligomers in particular
function in disease-related pathology of PD. There is ample evi-
dence that soluble oligomers are the real pathogenic species of
neurodegenerative disease, whereas fibrils serve as reservoirs of
misfolded, irreversibly modified deposited protein better-off re-
moved from solution [97-104]. Because amyloid deposits were
first detected in brains of sick individuals, it was assumed that they
were the neurotoxic species, but because amyloid is such a com-
mon structural motif, the ability to form amyloid is now consid-
ered a general property of a polypeptide in solution [105]. Over
and over, conversion of IDPs into amyloid aggregates has not been
observed to be a simple two-state transition [106]. Oligomer for-
mation has been established as an important mechanistic step in
fibril formation, for example as in Alzheimer’s disease [103,107].
As briefly described in asyn, soluble oligomeric intermediates
commonly appear as insoluble fibrils form [108-110] and the situ-
ation may be quite similar to that established for AD.

What determines if a protein will form soluble oligomeric spe-
cies, or if an amyloid fibril will form? It seems that a polypeptide
will sample many parallel or antiparallel conformations before a fi-
nal structural state is preferred [111]. This arises from a competi-
tion between hydrophobic forces and side chain interactions,
versus the propensity of the polypeptide chain to form B-sheet like
hydrogen bonds [112]. The prefibrillar oligomer is thought to be
the cytotoxic species, as toxic inter-chain associations are sampled
that a monomer alone could not support. The fluorescent probe 8-
anilinonaphthalene-1-sulfonic acid binds to exposed hydrophobic
patches. Its binding demonstrates that the most toxic species are
associated with greater overall surface hydrophobicity
[94,101,113-117]. In fact, overall greater hydrophobicity is associ-
ated with increased chance for exposed hydrophobic portions of
the sequence to exhibit toxicity through interaction with the mem-
brane. This may as well be the case for asyn [115,118].

Oligomeric PD pathology may be rooted in membrane associa-
tion, where oligomers of asyn can perturb membrane integrity
and cause cell death by altering transport across the membrane
[119-122]. At least one report demonstrates that in vivo mem-
brane associated asyn oligomers correlate with toxicity rather than
inclusion formation [118] but also that the degree of oligomer tox-
icity is related to an array of structurally diverse morphologies that
can form. Interestingly, of the familial mutants implicated in PD,
A30P and A53T have different kinetics of fibril formation relative

to the wild type monomer, but both share the property of an accel-
erated oligomerization [123,124]. These mutants may exert their
pathology through the formation of pore-like oligomers that form
alongside fibril formation [125].

3.2. Oligomers associated with the fibril formation pathway are highly
heterogeneous

During the time course of fibril formation early prefibrillar oligo-
mers and late soluble oligomers, which are not a part of the fibril
have been observed in asyn [109,126]. Their isolation and structural
characterization has been of great interest, and some shared features
of fibril accelerating or inhibiting species have been characterized. It
was postulated that an on-pathway amyloidogenic transition occurs
through partially folded oligomeric species originating in the dimer
[36]. Soluble aggregates first appear that maintain the helical char-
acter of the monomer, but lose some disorder in favor of B-rich struc-
ture as they age. B-rich intermediates build as fibril formation
proceeds and begin to get consumed at the end of the lag phase
[109,113]. This conversion into more B-rich species may describe
the formation of initial aggregates and their conversion into amy-
loid-like aggregates. The conformational conversion between oligo-
meric types observed by Dobson and colleagues is also accompanied
by direct observations of conversion into a more toxic form and
highlights that certain oligomer types can be either toxic or
non-toxic [108]. AFM has been used to observe B-rich spherical
and annular oligomer morphologies prior to fibril formation of asyn.
The initial aggregates appear to be spherical aggregates. They have
been shown to convert to more spherical compact species, and then
into annular species upon further incubation [127]. Annular species
of asyn are known to induce membrane leakage [104,128], but sphe-
roidal species can bind brain-derived membranes quite tightly, as
well [127]. Spherical morphologies seem to disappear once the fibril
has formed, whereas annular species may sometimes coexist with
the fibril [127]. Oligomer induced toxicity is relevant to the entire
fibril formation process.

Soluble oligomers may appear after the fibril has formed, or
their formation may instead be preferred. Late stage distinct oligo-
meric species appear once fibrils have formed and they are also B-
rich [110,113,126]. Some suggest they occur from dissociation of
the fibril or that they represent end-products of a fibril resistant-
soluble oligomerization pathway and may not be converted into fi-
bril. At the end of fibril formation 10-20% of protein exists as such
a non-fibrillar oligomer [129].

There are many pathways which have been identified toward
soluble aggregates. Organic solvents have been used to model
membranes, and it has been shown that a helical rich monomer
will eventually associate into a helical rich oligomer that also ap-
pears stable [130]. Covalently cross-linked non-fibrillar oligomers
are also well known to form under oxidative or nitrative stresses.
Nitration, for example, inhibits fibril formation through the forma-
tion of inhibitory higher-order oligomers than the dimer [131,132].
This mix of species only further describes the range of the second-
ary structures, morphologies and pathologies that oligomers of
asyn are capable of populating [92,94,95,133,134]. Increased oxi-
dative stresses and increased metal levels have been correlated
with PD, so this class of stable non-fibrillar oligomers that form un-
der stresses are potentially important players in the mechanism of
aggregation as well [133,135-138].

Various pathways available to soluble oligomer, not surpris-
ingly results in a very heterogeneous population of possible oligo-
mers. Oligomer morphology has been shown to be highly
dependent on solution conditions, including the presence of lipids
[127,139-142]. Also, incubation with different types of metals gen-
erates partially folded structures [143-145] that go onto form a
variety of oligomeric structures. Whereas incubation with
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Cu?*Fe*/Ni?* produce spherical oligomers of 0.8-4 nm particles,
incubation with Co?*/Ca?* produces yields pore-like annular rings
70-90 nm in diameter [146].

3.3. Stabilization of non-fibrillar oligomers that appear to be non-
pathogenic

In previous paragraphs our focus was on oligomers more closely
linked to pathology, but as mentioned, some oligomers can be sta-
bilized in non-fibrillar forms not capable of adopting cross-f struc-
ture on their own and may not necessarily be linked to cytotoxicity
(Fig. 1). The aisyn monomer that has been modified by methionine
oxidation of the aisyn monomer to the sulfoxides is one example of
these non-toxic non-fibrillar species. This modification at methio-
nine residues promotes the stabilization of an oligomer that ap-
pears slightly more unfolded than monomeric asyn. While
probably not covalently cross-linked, these oligomers exhibit sta-
bility and do not go onto form fibrils [147-149]. Furthermore,
these oligomers do not exhibit toxicity toward dopaminergic neu-
rons, suggesting that particular conformational features are indeed
necessary to exert pathology as an oligomer (Fig. 1) [149]. Interac-
tion with small molecules like the flavonoid baicalein can also pre-
vent formation of the fibril by stabilizing soluble oligomeric end
products and these oligomers also do not disrupt membranes
[150]. Structurally these species are spherical, have a well devel-
oped secondary structure, and are relatively globular with a pack-
ing density intermediate between globular protein and pre-molten
globule and very high thermodynamic stability. In contrast oligo-
mers stabilized by modification of the monomer with 4-hydroxy-
nonenal are non-fibrillar, but are also toxic [150]. Could a helical
tetramer be similarly stabilized, such that the stabilization in the
oligomer conformation is more favorable than in amyloid, and
could it also share conformational features of non-pathology with
aforementioned species? Descriptions of size, morphology or over-
all conformation may not be sufficient to describe the cytotoxicity
of an oligomer of asyn. For example, in amyloid-f two oligomers of
similar size but dissimilar toxicity have been identified, where the
more toxic species adopts a conformation in which hydrophobic
regions remain more exposed [151].

4. asyn is N-terminally acetylated in vivo

Before attention was drawn to the possible role of the acetyl
group by the recent report [25] of tetramer formation of asyn, asyn
was studied from a variety of sources, some of which were mam-
malian and were likely to be N-terminally acetylated. Although
the acetyl group had not previously warranted an explicit exami-
nation, drawing comparisons between in-cell work and in vitro
work could be challenging. Therefore, the report by Selkoe and col-
leagues clearly suggested that co- or post-translational modifica-
tions (PTM’s), namely acetylation, may have significant influence
on assyn structure and aggregation properties so specific investiga-
tion of the acetyl group naturally followed in the reports we de-
scribe in this review (Table 1). PTM’s to asyn are known to
regulate/modify osyn’s propensity to aggregate [134,147,152-
155]. It has been known for some time that asyn in human tissues
is acetylated, but the role of N-terminal acetylation is unclear, as it
is seen in both healthy and individuals sick with synucleinopathies.
Two mass spectrometry (MS) studies of asyn from human tissues,
both report that the base mass of the protein before any other
modifications is the acetylated form - consistent with that re-
ported by Selkoe and colleagues from red blood cells (RBCs)
[25,156,157]. The report indicated that acetylation of asyn was
not limited to neuronal tissue; however, the site of acetylation
was not identified.

4.1. Bacteria lack the machinery for N-terminal acetylation

Mammals modify the proteins they produce with many more
PTM'’s than yeast and bacteria, as these may play a role in more
complex signaling pathways [158,159]. N-terminal acetylation is
a well-known modification in eukaryotic cells. Up to 80% of pro-
teins are modified by N-terminal acetylation in mammals, whereas
bacteria rarely acetylate their N-termini and if they do, by dis-
tinctly different mechanisms [43]. The aforementioned MS studies
[156,157] indicated that acetylation occurs at the N-terminus,
where an acetyl group has removed the a-amino charge of the ini-
tiating amino acid by covalent modification at that site.

N-terminal acetylation is carried out mostly co-translationally
by a group of enzymes known as N-acetyltransferases (Nat) in
eukaryotes [160,161]. Mammalian cells have these complexes,
and yeast an analogous enzyme complex, but bacteria do not. Nat’s
catalyze the transfer of an N-acetyl group from acetyl-coenzyme A
to the N-termini of proteins with sequence specificity. Different
Nat’s (types A-F in eukaryotes) work upon different initiating ami-
no acid substrates, dependent upon the identity of the first two to
three amino acids of the protein polypeptide [158,159,162]. There-
fore, depending on the type of cell to synthesize asyn, the protein
may or may not be acetylated (Fig. 2A and B). Specifically,
N-acetyltransferase B (NatB) has asyn as a substrate, producing
acetylated asyn (Ac-asyn). NatB targets proteins beginning with
Met-Asn-, Met-Glu- or as in the case of asyn, Met-Asp-. Substrates
of NatB are acetylated nearly 100% of the time, as the acidic amino
acids in the second position are thought to stimulate the transfer of
the acetyl group [159].

4.2. Possible roles of N-terminal acetylation in vivo

Recognizing that asyn acetylation does indeed occur, one study
prior to Selkoe and colleagues’ investigated the role of NatB activity
in a yeast model by disrupting NatB activity [163]. They found
NatB activity to be essential for proper membrane targeting of
asyn. Without NatB activity, non-acetylated asyn is produced,
and a much more diffuse cytoplasmic localization of asyn com-
pared to those with whole NatB activity (producing Ac-asyn) was
observed. While this in vivo effect was observed in this one in-
stance for Ac-assyn, the role of N-terminal acetylation is not gener-
ally well understood [164]. One study suggests that N-terminal
acetylation represents an early sorting step, where acetylated pro-
teins are targeted toward the endoplasmic reticulum, unless they
remain non-acetylated and are kept localized to the cytosol instead
[165]. N-terminal acetylation may also regulate degradation path-
ways [166] or be responsible for structural effects at the N-termi-
nus [167]. Levels of acetylation may be related to regulation of
other post translational modifications. NatB, specifically, has been
shown to induce elevated phosphorylation levels in yeast [168]
consistent with the aforementioned yeast study of asyn, where de-
creased levels of phosphorylation were observed when the protein
remained non-acetylated and localized in the cytosol [163]. Acety-
lation may not be necessary at all for proteins, but some examples
do point to a necessity. For example, tropomyosin requires N-ter-
minal acetylation so that it may bind to actin [169].

5. asyn is proposed to be a helical tetramer in its native state

Selkoe and colleagues strived to isolate asyn under physiological
conditions and have challenged the existence of the asyn mono-
meric ensemble [25] by proposing a fibril-resistant helical tetramer
form of the protein (Table 1). In contrast to the typical protocol in
which asyn has been derived from bacterial systems, overexpres-
sed and denatured, they purified asyn from gently-treated RBCs
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known to have a high endogenous expression level of human
Ac-asyn. From both RBC lysate and endogenously expressed asyn
from neuronal and non-neuronal cells lines, Selkoe and colleagues
showed on Clear Native PAGE (CN-PAGE), that asyn migrates near
the tetramer position against folded, globular protein standards.
The unusual migration of an IDP against globular standards was
not unfamiliar. Native gels are unreliable objective determinants
of molecular weight, as protein migration through the acrylamide
matrix depends strongly on protein charge and shape. IDP’s typi-
cally display a Stokes radius of a much higher molecular weight
species, and this has previously been attributed to enhanced inter-
actions with the matrix [36], so that Escherichia coli derived boiled
asyn, too, will migrate near the position of the tetramer at 58 kDa
on a native gel [25].

Selkoe and colleagues’ report also stated that they obtained a
CD spectrum that indicated largely helical structure that was sen-
sitive to irreversible heat denaturation. Isolation from human cell
line 3D5 (which are M17D cells stably expressing asyn) yielded
similar results to RBC derived aisyn, and they showed that asyn de-
rived from E. coli was random coil even after non-denaturing puri-
fication, consistent with previous reports [41]. Therefore Bartels
et al. implied that expression in human cell lines and a non-dena-
turing purification are necessary to “preserve” this native tetramer
structure. If this is indeed the native form of asyn, non-denaturing
methods of purification and mammalian machinery may be neces-
sary to observe it. When denatured, RBC asyn became random coil,
and migrated more similarly to E. coli derived aisyn on a native gel,
rather than the mildly purified helical sample.

Helical structure of asyn can be induced by its interaction with
membranes. Therefore, it might logically follow that the milder
purification did not fully remove helix inducing lipids. However,
treatment with Lipidex and subsequent phosphate analysis indi-
cated the sample was relatively pure in that regard (0.25 mol phos-
phate/asyn monomer). At the same time, a higher lipid binding
capacity for this “native” asyn was demonstrated with surface
plasmon resonance. They also employed some unbiased methods
of MW determination including sedimentation equilibrium-ana-
lytical ultracentrifugation (SE-AUC) and scanning transmission
electron microscopy both indicating a tetramer. Bartels et al. also
observed one other unprecedented trait of the sample - that under
standard fibril assay conditions, Thioflavin T (ThT) fluorescence did
not indicate that RBC ac-asyn formed any fibrils in vitro - clearly
also in contrast to previously observed results and the in vivo con-
dition (Table 1).

Not too long after, Wang et al. [140] similarly reported a dy-
namic tetramer form of the protein. The protein was obtained by
recombinant expression methods and was modified by a 10 resi-
due N-terminal tag left over from a glutathione S-transferase
(GST) construct, making it difficult to compare directly with the
tetramer obtained from RBCs. The purification method was simi-
larly “non-denaturing” but included the non-physiological deter-
gent beta-octyl glucopyranoside (BOG) typically used to purify
membrane bound protein. Perhaps N-terminal acetylation was
somehow mimicked by the cleaved GST-tag and would prove to
be important in the context of a non-denaturing purification.
Researchers now would interpret data in light of a greater possibil-
ity of the tetramer, and more carefully consider their assumption
that their expression and purification methods did not preclude
an accurate representation of the protein in vivo.

6. Subsequent studies indicate that asyn exists as a primarily
unfolded monomer

A rapid period of overlapping work began to determine the olig-
omeric state of asyn from various cell sources, under non-denatur-

ing conditions and to investigate the role of the acetyl group
modification. Lashuel and colleagues examined asyn from mouse,
rat and human brains and addressed the issue of the source, the
purification and the characterization methods of the protein and
their impact on the oligomerization state (Table 1) [29].

In response to report by Bartels et al., Lashuel and colleagues
determine that asyn exists as an unfolded monomer within neuro-
nal sources. Fauvet et al. [29] examined bacterial lysates under
denaturing and non-denaturing conditions (with and without a
boiling purification step respectively) against a range of non-glob-
ular standards, including: (1) E. coli derived unfolded monomeric
asyn (2) disulfide linked A140C asyn including some dimer and
(3) Ac-asyn. Regardless of purification, samples from bacterial ly-
sates elute and migrate at identical positions on a size exclusion
chromatography (SEC) column or CN-PAGE. This indicated that
the various samples are either all unfolded monomers, all more
compact tetramers, or that coincidentally these structures migrate
at identical positions. Coupled now with a far UV spectrum of a pri-
marily random coil protein, rather than a helical spectrum ob-
served by CD, however, Lashuel and colleagues bacterial asyn
appears to be unfolded regardless of whether it has been boiled
and it resembles unfolded monomeric asyn. A random coil spec-
trum is not necessarily synonymous with a monomeric protein.
Static light scattering (SLS) was used as a more unbiased molecular
weight determinant alongside elution from SEC [170]. While data
from size exclusion chromatography (SEC), indicated a Stokes ra-
dius close to a globular standard at 64 kDa, SLS indicates a protein
of 14 kDa. Therefore bacteria, consistent with Selkoe and col-
leagues’ observations, do not assemble into a helical tetramer, even
without boiling.

Lashuel and coworkers [29] demonstrated a sensitivity of CN-
PAGE to small differences in the protein composition and went
onto use CN-PAGE to explore the role of mammalian machinery
and denaturation by boiling. Whether endogenous or overexpres-
sed, whether boiled or not, whether isolated from bacteria or pres-
ent in mouse, rat samples or HEK293, HeLa, SH-SY5Y, CHO, and
COS-7 mammalian cell lines - identical CN-page migration and
sometimes SEC-SLS, repeatedly indicated the unfolded monomer.
Across research groups, acrylamide percentages, purification pro-
tocols and the source, the samples of aisyn co-migrate with recom-
binant asyn. To test whether factors present in cell could promote
tetramerization, they examined fresh or aged samples, since aged
samples are expected to be more oligomer-rich, along with a con-
trol of exogenously added recombinant protein. In vivo oligomer-
specific enzyme-linked immunosorbent assay (ELISA) could not
detect any other oligomers in the samples, confirming that purifi-
cation has not disturbed this observation [29,171]. In addition, the
report explored the possibility that the tetramer population could
be dynamic and unstable, so that if the protein for some fraction of
the time populates a tetrameric state, it would have a different
cross-linking profile than a protein that populates primarily the
monomer state. They observed that no significant amount of olig-
omers beyond the dimer are observed, indicating that DSS could
not effectively capture a tetramer either. This report additionally
repeated the RBC purification procedure [29]. Unable to replicate
the tetramer, it was still concluded that disordered monomer is
isolated from RBC's. It is not clear what Selkoe and colleagues
[25] did differently, but Fauvet et al. [29] does note that samples
of sufficient quantity and purity could not be obtained using this
purification, even with another hydrophobic interaction chroma-
tography (HIC) step, suggesting some complicating interactions
in either sample. Fauvet et al. also attempted the GST-constructed
asyn protocol and cannot replicate the dynamic tetramer observa-
tions of Wang et al.

Concurrently, Rhoades and colleagues sought to determine if the
nature of the purification method [32] or N-terminal acetylation
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had enough biophysical consequence to promote the fibril-resistant
tetramer. They examined samples purified with and without BOG
and the N-terminal acetyl-group. Trexler et al. is the first to use a
bacterial co-expression system to generate Ac-asyn (Fig. 2C). In this
co-expression system developed by Mulvihill et al. [172], the yeast
analog to NatB is cloned into a bacterial plasmid, allowing overex-
pression of asyn into more unsophisticated expression systems.
The yeast NatB is shown to function in bacteria to produce N-termi-
nally acetylated proteins, and it seems to acetylate asyn close to
100% of the time in E. coli. Trexler et al. finds that N-terminal acet-
ylation and non-physiological purification including BOG were nec-
essary for observation of helical oligomeric asyn. Non-acetylated or
BOG free asyn was disordered and presumably monomeric, but the
CD spectrum of Ac-asyn purified in the presence of BOG was helical.
Rhoades and colleagues also encounter the complication that disor-
dered monomer and helical tetramer have similar hydrodynamic
radii, but coupled with SE-AUC, which is “independent” of molecu-
lar shape, Ac-asyn(BOG) was shown to have a sedimentation curve
that exchanged with an oligomer. That the sample was specifically
tetrameric is not clear. While the report by Trexler et al., does not
exclude the possibility that N-terminally acetylated asyn has a
higher affinity for membranes and/or BOG itself, the work was fur-
ther provocative towards the role of acetylation in helicity and
oligomerization.

7. Continued discussion on the oligomerization state of asyn

In response to the studies that indicate that cellular asyn is an
unfolded monomer [27,29], Selkoe and coworkers [33], with an
even further heightened awareness to experimental conditions,
most recently reported that endogenous asyn is predominantly
tetramer. Using in vivo cross-linking as their primary tool, they
identify several factors which might matter in terms of isolating
the tetramer. During overexpression, particularly in protein de-
rived from IPTG induction, more monomer is found. More mono-
mer is also isolated when cross-linking is done at 4°C as
opposed to 37 °C. The tetramer is “preserved” in a concentration
dependent manner at the time of lysis, where a higher concentra-
tion at the time of lysis favors the tetramer. This suggests that mac-
romolecular crowding in cell may favor folding and stabilization of
the native non-pathological tetramer. For this reason and for the
fact that the Ac-asyn level is endogenously high in erythrocytes,
Selkoe and colleagues’ considers RBC’s an ideal system to obtain
Ac-asyn. These results may reflect of the experiments themselves,
or may reflect the preference of the monomer to associate with it-
self, even in the presence of other binding partners, but that it is
also stabilized in the monomeric form.

8. N-terminal acetylation of monomeric asyn induces helix
formation and affects lipid binding

Because Ac-asyn is now recognized to be the physiologically
relevant species in the brain, its biophysical characterization has
been pursued. Questions that have been raised include the mono-
mer or oligomeric preference of the Ac-aisyn species, its conforma-
tion, interactions with membranes and ability to form fibrils. Kang
et al. [30], show that recombinant 100% acetylated Ac-aisyn puri-
fied under mild physiological conditions exists primarily as a
monomeric protein. ESI-IMS-MS experiments indicate a small
population (5-10%) of dimer that is consistent with previous
observations of dimer species in solution. Lashuel and colleagues
[28] use similar techniques as in their first report and again do
not observe any higher-order oligomers, now in the acetylated pro-
tein. This suggests that acetylation by itself is not sufficient to favor
a helical tetramer. Selenko and colleagues [27] show by in-cell

NMR that non-acetylated asyn is a disordered monomer in the
macromolecular environment of the cell. Lashuel’s group [28]
additionally compares Ac-osyn and asyn with in-cell NMR and
draws similar conclusions. Although the possibility of exchange
with higher-order oligomers cannot be ruled out, the predominant
cellular form indicated by these experiments of Ac-asyn is un-
folded monomer (Table 1).

The conformational properties of Ac-asyn have also thus far
been investigated and it is suggested that there is minimal change
in the hydrodynamic radius and intra-chain long-range interac-
tions, if any [28,31]. However, the N-terminal acetyl group affects
the transient secondary structure as observed by NMR [28,30,31].
Residue-specific NMR chemical shift analysis shows that there is
an increase in the transient helical propensity at the initiating N-
terminus [28,30,31] that may arise as the acetyl group masks the
alpha-amino positive charge and interacts favorably with the helix
dipole moment. Additionally, the acetyl group itself is a good N-
cap, favoring hydrogen bonding for an N-terminal alpha helix at
the initiating residues [173,174].

At least one report suggests the membrane binding properties
of Ac-asyn are strongly altered by acetylation and indicates a
two-fold higher lipid affinity. It is suggested that the increase in
N-terminal transient helix may be critical to initiating membrane
binding. Preformed transient helix at the N-terminus may there-
fore play an important role in the recognition of binding partners,
may be important for membrane recognition, or may imply that li-
pid mediated association of the hydrophobic surfaces of helices
may relevant to routes of self-association of the acetylated
monomer.

Fibril formation of Ac-asyn was investigated by measuring the
fibrillation kinetics using ThT fluorescence. While groups of Lash-
uel [28] and Bax [31] found no significant differences in fibril for-
mation rate, Kang et al. [30] found that N-terminal acetylation
slows the rates of fibril formation by approximately a factor of
two. Clearly the acetyl group alone cannot inhibit fibril formation,
but it does impart a small inhibitory effect, which may arise from a
redistribution of the monomeric protein ensemble.

9. Conclusions

Recent studies that suggested that asyn exists as a soluble, tet-
rameric, fibril-resistant form of asyn were provocative, and a
monomer/tetramer debate followed. The discussions about the
accessible states of asyn have raised many important questions re-
lated to cellular machinery, asyn purification methods and the ex-
tent to which acetylation impacts on a monomer-oligomer
equilibrium. A number of in depth studies have subsequently re-
vealed that both non-acetylated and acetylated asyn purified un-
der mild or harsh conditions is primarily a monomer.

Despite the controversy surrounding the notion of a helical non-
pathological tetramer, the concept of a soluble, non-pathological
asyn oligomer was perhaps not new. Biophysical studies have
shown that asyn can be induced to self-associate into a heteroge-
neous variety of soluble oligomers, some of which may be benefi-
cial, or non-pathological. For example, methionine oxidation,
arising from conditions of oxidative stress, stabilizes a fibril resis-
tant oligomer of asyn that is non-toxic to dopaminergic cells
[149]. This may be consistent with the regulatory role methionine
oxidation is suggested to have, sometimes being beneficial.

In order to understand the interplay between aggregation prone
and aggregation-resistant kinetic pathways from the unfolded
monomer, the initial interchain associations between monomers
within the starting ensemble and associations present in already-
isolated stable soluble oligomers may need to be considered fur-
ther. Defining the properties that drive these different species
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may lend to our understanding of how to enhance fibril-resistant,
fibril prone and/or non-toxic pathways in vivo. Because of the great
ability of asyn to adopt many conformations in a variety of oligo-
meric states, working from the monomer ensemble of Ac-asyn we
may (again) isolate stabilizing interactions of a helical oligomeric
species that does not tend toward fibril and we may begin to better
elucidate shared features of non-pathology and fibril-resistance
amidst the entirety of the currently known heterogeneous oligo-
mer population of asyn.
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