kibum article4 abf4eStem cells have attracted increasing research interest in the field of regenerative medicine because of their unique ability to differentiate into multiple cell lineages. However, controlling stem cell differentiation efficiently and improving the current destructive characterization methods for monitoring stem cell differentiation are the critical issues.

Addressing this challenge, scientists from Prof. KiBum Lee’s Lab (Jin-Ho Lee, Letao Yang, and Sy-Tsong Dean Chueng have recently developed multifunctional graphene–gold (Au) hybrid nanoelectrode arrays (NEAs) to: (i) investigate the effects of combinatorial physicochemical cues on stem cell differentiation, (ii) enhance stem cell differentiation efficiency through biophysical cues, and (iii) characterize stem cell differentiation in a nondestructive real‐time manner are developed. Through the synergistic effects of physiochemical properties of graphene and biophysical cues from nanoarrays, the graphene‐Au hybrid NEAs facilitate highly enhanced cell adhesion and spreading behaviors. In addition, by varying the dimensions of the graphene‐Au hybrid NEAs, improved stem cell differentiation efficiency, resulting from the increased focal adhesion signal, is shown. Furthermore, graphene‐Au hybrid NEAs are utilized to monitor osteogenic differentiation of stem cells electrochemically in a nondestructive real‐time manner. Collectively, it is believed the unique multifunctional graphene‐Au hybrid NEAs can significantly advance stem‐cell‐based biomedical applications.

This work was recently published in Advanced Materials (Lee, J. -H. et al. 2018, 30 (39): 1802762, DOI: 10.1002/adma.201802762) and was selected to appear on the Front Cover Picture.

advmaterials f438f

Click here for more information. 

Group Members: 

KBLEE db718Prof. KiBum Lee 







JHLEE 8c598Jin-Ho LeeLYANG 5336bLetao YangDCHUENG 6efacDean Chueng